Homogeneity or implicature An experimental study of free choice

Lyn Tieu, Cory Bill, and Jacopo Romoli

Leibniz-Zentrum Allgemeine Sprachwissenschaft

XPRAG2019, The University of Edinburgh, the 20th June 2019

Implicatures and their boundaries

• What should we treat as implicatures?

Implicatures and their boundaries

- Plural definites
- Bare plurals
- Neg-raising
- Temporal inferences
- Free choice
- •

The focus

- Plural definites
- Bare plurals
- Neg-raising
- Temporal inferences
- Free choice
- •

Today

The question: Is Free choice an implicature?

Today

Experimental project directly addressing this question

Outline

What is free choice?¹

(1) Angie is allowed to buy the car or the boat.

¹von Wright 1968, Kamp 1974

What is free choice?¹

(1) Angie is allowed to buy the car or the boat.

→ Angie can choose between the two

¹von Wright 1968, Kamp 1974

Disappearing under negation

(2) Angie is not allowed to buy the car or the boat.

Disappearing under negation

Disappearing under negation

Two main approaches

- Implicature based
- 2 Non-implicature based

The goal

Testing a clear divergent prediction of the two approaches

The main result

A challenge for the implicature approach

Why does it matter?

• Tells us something about theories of free choice

Why does it matter?

- Tells us something about theories of free choice
- Potentially about implicatures as well

Why does it matter?

- Tells us something about theories of free choice
- Potentially about implicatures as well
- Experimentally distinguishes between theories

Background

- Background
- 2 The two approaches

- Background
- 2 The two approaches
- 3 The divergent prediction

- Background
- 2 The two approaches
- 3 The divergent prediction
- 4 The experiment

- Background
- 2 The two approaches
- 3 The divergent prediction
- 4 The experiment
- 5 Discussion and conclusion

Outline

Outline

Free choice

(3) Angie is allowed to buy the car or the boat.

→ Angie can choose between the two

Under negation

4D > 4A > 4B > 4B > B 900

(5) $\Diamond (A \vee B)$

$$(5) \qquad \Diamond (\mathsf{A} \vee \mathsf{B}) \!\!\rightsquigarrow \Diamond \mathsf{A} \wedge \Diamond \mathsf{B}$$

FREE CHOICE

$$(5) \qquad \Diamond (A \vee B) \rightsquigarrow \Diamond A \wedge \Diamond B$$

FREE CHOICE

(6)
$$\neg \Diamond (A \lor B) \rightsquigarrow \neg \Diamond A \land \neg \Diamond B$$

$$(5) \qquad \Diamond (A \vee B) \rightsquigarrow \Diamond A \wedge \Diamond B$$

FREE CHOICE

$$(6) \qquad \neg \Diamond (\mathsf{A} \vee \mathsf{B}) \rightsquigarrow \neg \Diamond \mathsf{A} \wedge \neg \Diamond \mathsf{B}$$

DUAL PROHIBITION

The empirical puzzle

• How free choice arises in positive contexts

The empirical puzzle

- How free choice arises in positive contexts
- How dual prohibition arises in negative contexts

Two main approaches

- Implicature based
- 2 Non-implicature based

Outline

The implicature approach²

• Free choice is an implicature

The implicature approach²

- Free choice is an implicature
- Dual prohibition is just part of the literal meaning

²Fox 2007, Klinedinst 2006, Chierchia 2013, Chemla 2010, Franke 2013, Santorio & Romoli 2018, Bar-Lev & Fox 2017 a.o ← □ →

$$(7) \qquad \Diamond (\mathsf{A} \vee \mathsf{B}) = \Diamond \mathsf{A} \vee \Diamond \mathsf{B}$$

LITERAL MEANING

(7)
$$\Diamond (A \vee B) = \Diamond A \vee \Diamond B$$

(8)
$$\neg \Diamond (A \lor B) = \neg \Diamond A \land \neg \Diamond B$$

DUAL PROHIB

(7)
$$\Diamond(A \lor B) = \Diamond A \lor \Diamond B$$
 LITERAL MEANING

(8)
$$\neg \Diamond (A \lor B) = \neg \Diamond A \land \neg \Diamond B$$
 Dual prohib

(9)
$$IMP[\Diamond(A \lor B)] = \Diamond A \land \Diamond B$$
 Free Choice

(7)
$$\Diamond(A \lor B) = \Diamond A \lor \Diamond B$$
 LITERAL MEANING

(8)
$$\neg \Diamond (A \lor B) = \neg \Diamond A \land \neg \Diamond B$$
 Dual prohib

(9)
$$\operatorname{IMP}[\Diamond(A \vee B)] = \Diamond A \wedge \Diamond B$$
 Free Choice

(10) *
$$\neg \text{IMP} \Diamond (A \lor B)) = \neg \Diamond A \lor \neg \Diamond B$$
 Negated free choice

- Free choice arises as an implicature
- Dual prohibition is just part of the literal meaning

Outline

Non-implicature accounts³

The implicature approach is not the only option

³Aloni 2018, Starr 2016, Willer 2018, Goldstein 2018, Rothschild and Yablo 2018; see also Chemla 2010 ← □ → ← □

Non-implicature accounts³

- The implicature approach is not the only option
- Non-implicature accounts of free choice

 $^{^3}$ Aloni 2018, Starr 2016, Willer 2018, Goldstein 2018, Rothschild and Yablo 2018; see also Chemla 2010

Non-implicature accounts³

- The implicature approach is not the only option
- Non-implicature accounts of free choice
- A recent account based on homogeneity for concreteness

 $^{^3}$ Aloni 2018, Starr 2016, Willer 2018, Goldstein 2018, Rothschild and Yablo 2018; see also Chemla 2010 $$\tt CP \to \tt CP$

The homogeneity approach: the gist⁴

• Free choice is just part of the literal meaning

⁴Goldstein 2018, Rothschild and Yablo 2018

The homogeneity approach: the gist⁴

- Free choice is just part of the literal meaning
- Dual prohibition arises via homogeneity

⁴Goldstein 2018, Rothschild and Yablo 2018

The homogeneity approach: the gist⁵

- Free choice is just part of the literal meaning
- Dual prohibition arises via a homogeneity presupposition

⁵Goldstein 2018, Rothschild and Yablo 2018

(11)
$$\Diamond(A \vee B) = \Diamond A \wedge \Diamond B$$

FREE CHOICE

(11)
$$\Diamond (A \lor B) = \Diamond A \land \Diamond B$$
 Free Choice (12) $\Diamond A \leftrightarrow \Diamond B$ Homogeneity

(11)
$$\Diamond(A \lor B) = \Diamond A \land \Diamond B$$
 free Choice

(12)
$$\Diamond A \leftrightarrow \Diamond B$$
 homogeneity

(13)
$$\neg \Diamond (A \lor B) = \neg (\Diamond A \land \Diamond B)$$
 negated free choice

(14)
$$\Diamond (A \lor B) = \Diamond A \land \Diamond B$$
 Free Choice (15) $\Diamond A \leftrightarrow \Diamond B$ Homogeneity

(16)
$$\neg \Diamond (A \lor B) = \neg (\Diamond A \land \Diamond B)$$
 NEGATED FREE CHOICE

(14)
$$\Diamond (A \lor B) = \Diamond A \land \Diamond B$$
 FREE CHOICE
(15) $\Diamond A \leftrightarrow \Diamond B$ HOMOGENEITY
(16) $\neg \Diamond (A \lor B) = \neg (\Diamond A \land \Diamond B)$ NEGATED FREE CHOICE
(17) $\neg \Diamond A \land \neg \Diamond B$ DUAL PROHIB

- Free choice is just part of the literal meaning
- Dual prohibition arises via the homogeneity presupposition

Outline

The two approaches

• Successfully capture basic pattern and more complex data

The two approaches

- Successfully capture basic pattern and more complex data
- Roughly with similar empirical coverage

A simple divergent prediction⁶

Distinguish between the two given a simple divergent prediction

⁶Kriz 2015, 2017, Tieu et al 2018

Free choice vs dual prohibition

- (18) Angie is allowed to buy the car or the boat *→ Angie can choose between the two*FREE CHOICE
- (19) Angie is not allowed to buy the car or the boat *→ Angie cannot buy either one*DUAL PROHIB

The implicature approach

(20) Angie is allowed to buy the car or the boat *→ Angie can choose between the two* IMPLICATURE

The implicature approach

- (20) Angie is allowed to buy the car or the boat

 → Angie can choose between the two IMPLICATURE
- (21) Angie is not allowed to buy the car or the boat *→ Angie cannot buy either one*LITERAL MEANING

The homogeneity approach

(22) Angie is allowed to buy the car or the boat *→ Angie can choose between the two* LITERAL MEANING

The homogeneity approach

- (22) Angie is allowed to buy the car or the boat

 → Angie can choose between the two LITERAL MEANING
- (23) Angie is not allowed to buy the car or the boat

 → Angie cannot buy either one (VIA) PRESUPPOSITION

The homogeneity approach

- (24)Angie is allowed to buy the car or the boat → Angie can choose one iff she can choose the other PRES
- (25)Angie is not allowed to buy the car or the boat → Angie can choose one iff she can choose the other PRES

Difference in status

Context: Angie is only allowed to buy the boat

(26) Angie is allowed to buy the car or the boat

→ Angie can choose between the two

FALSE IMP

Difference in status

Context: Angie is only allowed to buy the boat

(27) Angie is not allowed to buy the car or the boat

→ Angie cannot buy either one

FALSE

No difference in status

Context: Angie is only allowed to buy the boat

(28) Angie is allowed to buy the car or the boat *→ Angie can choose one iff she can choose the other*PS FAIL

No difference in status

Context: Angie is only allowed to buy the boat

(29) Angie is not allowed to buy the car or the boat → Angie can choose one iff she can choose the other PS FAIL

	IMPLICATURE	HOMOGENEITY
POS	IMPLICATURE VIOLATION	PRESUPPOSITION FAILURE
NEG	FALSITY	PRESUPPOSITION FAILURE

	IMPLICATURE	HOMOGENEITY
POS	IMPLICATURE VIOLATION	PRESUPPOSITION FAILURE
NEG	FALSITY	PRESUPPOSITION FAILURE

• Testing these predictions

In sum

- Testing these predictions
- A simple way to distinguish between the two approaches

Outline

The goal

• Testing the divergent predictions above

The goal

A ternary task building on previous work on implicatures, presuppositions, and homogeneity⁷

⁷Kriz & Chemla 2016, Katsos and Bishop 2011, Abrusan and Szendroi 2013

Free choice - FC

- (30) Angie is allowed to buy the car or the boat
- (31) Angie is not allowed to buy the car or the boat

Simple disjunction - OR

- (32) Angie bought the car or the boat
- (33) Angie didn't buy the car or the boat

Simple disjunction - OR

(34) Angie bought the car or the boat

→ Angie didn't buy both the car and the boat

IMP

Simple disjunction - OR

(34)Angie bought the car or the boat → Angie didn't buy both the car and the boat IMP

(35)Angie didn't buy the car or the boat → Angie didn't buy either

LIT MEAN

The design

2x2 design with <code>INFERENCE TYPE</code> (FC vs OR; between) and <code>POLARITY</code> (within) as factors

Material⁸

• Contexts with three items

Material⁸

- Contexts with three items
- Representing what a character was allowed/not allowed to buy (FC)

⁸Skordos et al 2019

Material⁸

- Contexts with three items
- Representing what a character was allowed/not allowed to buy (FC)
- or what a character bought/didn't buy (OR)

Material: FC targets

Material: FC targets

(36) Angie is allowed to buy the car or the boat

Material: FC targets

- (36) Angie is allowed to buy the car or the boat
- (37) Angie is not allowed to buy the car or the boat

Material: OR targets

Material: OR targets

- (38) Angie bought the car or the boat
- (39) Angie didn't buy the car or the boat

OR targets

(40) Angie bought the car or the boat POSITIVE

(41) Angie didn't buy the car or boat NEGATIVE

Controls

- FC and OR
- Positive and negative
- True and false

Materials

• Each participant saw 8 targets and 8 controls in total

• Ternary judgment task with participants evaluating sentences attributed to a puppet against a scenario

- Ternary judgment task with participants evaluating sentences attributed to a puppet against a scenario
- The task is to choose a reward among three possible ones

- Ternary judgment task with participants evaluating sentences attributed to a puppet against a scenario
- The task is to choose a reward among three possible ones

Prediction mode: the sentences are puppet's guesses about

Prediction mode: the sentences are puppet's guesses about

what a character is allowed/not allowed to buy

FC

Prediction mode: the sentences are puppet's guesses about

what a character is allowed/not allowed to buy

• what a character bought/didn't buy OR

FC.

Example FC negative

Angie is not allowed to buy the car or the boat

Example FC negative

Example FC negative

Participants

- 114 participants recruited through AMT, randomly assigned to the two conditions
- 3 excluded for not reporting English as their native language, leaving 111 participants (56 in FC condition, 55 in disjunction condition)

Predictions - OR - both approaches

Predictions - OR - both approaches

(42) Angie bought the car or the boat

IMP FALSE

(43) Angie didn't buy the car or the boat

FALSE

Predictions - OR

(44)Angie bought the car or the boat

(45)Angie didn't buy the car or the boat

Predictions - FC - implicature approach

Predictions - FC - implicature approach

- (46) Angie is allowed to buy the car or the boat IMP FALSE
- (47) Angie is not allowed to buy the car or the boat FALSE

Predictions - FC - implicature approach

- (48)Angie is allowed to buy the car or the boat
- Angie isn't allowed to buy the car or the boat 📍 📍 (49)

Predictions - FC - homogeneity approach

(50) Angle is allowed to buy the car or the boat ${
m PS}$ FAIL

(51) Angie is not allowed to buy the car or the boat PS FAIL

Predictions - FC - homogeneity approach

(52) Angie is allowed to buy the car or the boat

(53) Angie isn't allowed to buy the car or the boat

Predictions - FC - homogeneity approach

- (54)Angie is allowed to buy the car or the boat
- Angie isn't allowed to buy the car or the boat (55)

	OR	FC IMP	FC ном
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

	OR	FC IMP	FC ном
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

	OR	FC IMP	FC ном
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

	OR	FC imp	FC ном
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

Predictions - in sum

• An interaction between TYPE OF INFERENCE and POLARITY

Predictions - in sum

- An interaction between TYPE OF INFERENCE and POLARITY
- Challenging for the implicature approach

Predictions - in sum

- An interaction between TYPE OF INFERENCE and POLARITY
- Challenging for the implicature approach
- Entirely in line with the homogeneity approach

Outline

Angie didn't buy the car or the boat

Angie bought the car or the boat

Angie is not allowed to buy the car or the boat

Angie is allowed to buy the car or the boat

Results⁹

Effect of Polarity ($\chi^2(1)=102, p<.001$) Marginal effect of inference type ($\chi^2(1)=3.2, p=.07$)

⁹Mixed effects cumulative link model

Results¹⁰

¹⁰Mixed effects cumulative link model

In sum

• Interaction between type of inference and polarity

In sum

- Interaction between type of inference and polarity
- Difference between positive and negative with OR

In sum

- Interaction between type of inference and polarity
- Difference between positive and negative with OR
- Symmetric responses for positive and negative with FC

Controls

Outline

 Experimental work addressing the debate between implicature and non-implicature approaches to free choice

• Participants' distinguished between falsity and implicature violation

- Participants' distinguished between falsity and implicature violation
- But assigned intermediate status to both positive and negative FC conditions

• Interaction inference type and polarity

- Interaction inference type and polarity
- Challenging for the implicature approach

- Interaction inference type and polarity
- Challenging for the implicature approach
- Entirely in line with the homogeneity approach

• Either as supporting a non-implicature approach or as a push to refine the implicature one

- Either as supporting a non-implicature approach or as a push to refine the implicature one
- Powerful and simple perspective to address this debate

- Plural definites
- Bare plurals
- Neg-raising
- Temporal inferences
- . . .

Thanks!

Moysh Bar-Lev, Milica Denic, Simon Goldstein, Mora Maldonado, Paul Marty, Agata Renans, and Paolo Santorio

Outline

A difference

• OR and FC are analogous in both positive and negative

A difference

- OR and FC are analogous in both positive and negative
- The FC negative condition has a true reading with wide scope disjunction

(56) Angie is not allowed to buy the car or the boat FA

FALSE

- (56) Angie is not allowed to buy the car or the boat FALSE
- (57) Either Angie is not allowed to buy the car or she is not allowed to buy the boat TRUE

(58) Angie didn't buy the car or the boat

FALSE

(58) Angie didn't buy the car or the boat FALSE

(59) Either Angie did not buy the car or she did not buy the boat FALSE

Back to the results

Possible interpretation

When there is ambiguity and the truth-value of the readings are different, the intermediate value is chosen¹¹

¹¹Bill et al 2018

Possible interpretation

The negative FC would be accounted for given this hypothesis

 To test this hypothesis we need a baseline with OR and negation

- To test this hypothesis we need a baseline with OR and negation
- Where wide scope disjunction leads to a true reading

(60) Angie didn't buy the boat or the car

FALSE

(60)Angie didn't buy the boat or the car FALSE

Either Angie did not buy the boat or she did not buy the (61)car

TRUE

Context: $A \land \neg B$

(62)
$$\neg (A \lor B)$$

FALSE

TRUE

We have it already

Comparing it to the FC negative target

The comparison

The comparison

Marginally significant effect of inference type (z = 1.7, p = .08)

The comparison

- (64) Angie is not allowed to buy the car or the boat
- (65) Angie didn't buy the car or the boat

In sum

 Wide scope as an explanation of the difference between OR and FC negative?

In sum

- Wide scope as an explanation of the difference between OR and FC negative?
- The comparison with the OR control also reveals a difference

In sum

- Wide scope as an explanation of the difference between OR and FC negative?
- The comparison with the OR control also reveals a difference
- Scope might be playing a role but it can't be the whole story

Outline

Addressing the challenge

Appealing to differences among scalar items is not enough¹²

¹²Scalar diversity - van Tiel et al 2016

Addressing the challenge

ullet Unclear that a difference between alternatives would help 13

¹³Chemla and Bott 2013, Tieu et al 2016

Addressing the challenge

Re-thinking the distribution of implicatures might help¹⁴

¹⁴Enguehard and Chemla 2018

(66) Angie is not allowed to buy the car or the boat

- (66) Angie is not allowed to buy the car or the boat
- (67) not[Angie is allowed to buy the car or the boat]

- (66) Angie is not allowed to buy the car or the boat
- (67) not[Angie is allowed to buy the car or the boat]
 - *→* Angie cannot buy either one

FALSE

- (68) Angie is not allowed to buy the car or the boat
- (69) not[IMP[Angie is allowed to buy the car or the boat]

- (68) Angie is not allowed to buy the car or the boat
- (69) not[IMP[Angie is allowed to buy the car or the boat]
 → it's not true that Angie can choose between the two

- (68) Angie is not allowed to buy the car or the boat
- (69) not[IMP[Angie is allowed to buy the car or the boat]

 → it's not true that Angie can choose between the two

 TRUE

Context: $\Diamond A \land \neg \Diamond B$

$$(70) \qquad \neg \Diamond (A \vee B) = \neg \Diamond A \wedge \neg \Diamond B$$

FALSE

Context:
$$\Diamond A \land \neg \Diamond B$$

$$(70) \qquad \neg \Diamond (A \vee B) = \neg \Diamond A \wedge \neg \Diamond B \qquad \qquad \text{false}$$

(71)
$$\neg (IMP \Diamond (A \lor B)) = \neg (\Diamond A \land \Diamond B)$$
 True

The interpretation as before

If one reading is true and one is false go for the intermediate value

Back to the results

The standard constraint

Do not weaken!: do not compute an implicature if it weakens the overall meaning of the sentence

The distribution of implicatures

$$(72) \qquad \neg \Diamond (A \vee B) = \neg \Diamond A \wedge \neg \Diamond B \qquad \qquad \text{false}$$

The distribution of implicatures

(72)
$$\neg \Diamond (A \lor B) = \neg \Diamond A \land \neg \Diamond B$$
 False
(73) $*\neg (IMP \Diamond (A \lor B)) = \neg (\Diamond A \land \Diamond B)$ True

Same for OR

(74)
$$\neg (A \lor B) = \neg A \land \neg B$$
 False

Same for OR

(74)
$$\neg (A \lor B) = \neg A \land \neg B$$
 False
(75) $\neg (IMP(A \lor B)) = \neg [(A \lor B) \land \neg (A \land B)]$ True

Same for OR

(76)
$$\neg (A \lor B) = \neg A \land \neg B$$
 FALSE
(77) $*\neg (IMP(A \lor B)) = \neg [(A \lor B) \land \neg (A \land B)]$ TRUE

A different principle¹⁵

Do not compute an implicature if it leads to a non-connected meaning

¹⁵Enguehard and Chemla 2018

A different principle¹⁶

• This principle can distinguish between FC and OR

A different principle¹⁶

- This principle can distinguish between FC and OR
- The inference of disjunction under negation leads to a non-connected meaning

¹⁶Enguehard and Chemla 2018

A different principle¹⁶

- This principle can distinguish between FC and OR
- The inference of disjunction under negation leads to a non-connected meaning
- Free choice under negation leads to a connected meaning

¹⁶Enguehard and Chemla 2018

A different principle

Context:
$$\Diamond A \land \neg \Diamond B$$

$$(78) \qquad \neg \Diamond (A \vee B) = \neg \Diamond A \wedge \neg \Diamond B \qquad \qquad \text{false}$$

(79)
$$\neg (IMP \lozenge (A \lor B)) = \neg (\lozenge A \land \lozenge B)$$
 True

Different for OR

(80)
$$\neg (A \lor B) = \neg A \land \neg B$$
 False
(81) $*\neg (IMP(A \lor B)) = \neg [(A \lor B) \land \neg (A \land B)]$ True

Back to the results

(82) Angie didn't buy the car or the boat ...

(82) Angie didn't buy the car or the boat ... she didn't want either one

(82) Angie didn't buy the car or the boat ... she didn't want either one EASY

- (82) Angie didn't buy the car or the boat ... she didn't want either one EASY
- (83) Angie didn't buy the car or the boat ...

- (82) Angie didn't buy the car or the boat ... she didn't want either one EASY
- (83) Angie didn't buy the car or the boat ... she bought both of them

- (82) Angie didn't buy the car or the boat ... she didn't want either one EASY
- (83) Angie didn't buy the car or the boat ... she bought both of them

(84) Angie is not allowed to buy the car or the boat ...

(84) Angie is not allowed to buy the car or the boat . . . she doesn't deserve either one

(84) Angie is not allowed to buy the car or the boat ... she doesn't deserve either one

- (84) Angie is not allowed to buy the car or the boat ... she doesn't deserve either one EASY
- (85) Angie is not allowed to buy the car or the boat ...

- (84) Angie is not allowed to buy the car or the boat ... she doesn't deserve either one EASY
- (85) Angie is not allowed to buy the car or the boat ... she can only buy the car

- (84) Angie is not allowed to buy the car or the boat ... she doesn't deserve either one EASY
- (85) Angie is not allowed to buy the car or the boat ... she can only buy the car EASY

In sum

Promising direction to address the challenge for the implicature approach

Instructions

When it's time to answer, you'll see a small strawberry, a medium strawberry, and a big strawberry!

If Raffie's guess is totally right, give her the biggest strawberry!

If Raffie's guess is totally wrong, give her the smallest strawberry!

If Raffie's guess is sort of in between – not totally right, but not totally wrong – then give her the medium strawberry.