Homogeneity or implicature An experimental study of free choice

Lyn Tieu, Cory Bill, and Jacopo Romoli

Leibniz-Zentrum Allgemeine Sprachwissenschaft

XPRAG2019, The University of Edinburgh, the 20th June 2019

Implicatures and their boundaries

- What should we treat as implicatures?

Implicatures and their boundaries

- Plural definites
- Bare plurals
- Neg-raising
- Temporal inferences
- Free choice
- ...

The focus

- Plural definites
- Bare plurals
- Neg-raising
- Temporal inferences
- Free choice
- ...

Today

The question: Is Free choice an implicature?

Today

Experimental project directly addressing this question

Outline

What is free choice? ${ }^{1}$

(1) Angie is allowed to buy the car or the boat.

What is free choice? ${ }^{1}$

(1) Angie is allowed to buy the car or the boat. \rightsquigarrow Angie can choose between the two

Disappearing under negation

(2) Angie is not allowed to buy the car or the boat.

Disappearing under negation

(2) Angie is not allowed to buy the car or the boat. \nsim It's not true that Angie can choose between the two

Disappearing under negation

(2) Angie is not allowed to buy the car or the boat. $\psi \rightarrow$ It's not true that Angie can choose between the two
\rightsquigarrow Angie cannot buy either one

Two main approaches

(1) Implicature based
(2) Non-implicature based

The goal

Testing a clear divergent prediction of the two approaches

The main result

A challenge for the implicature approach

Why does it matter?

- Tells us something about theories of free choice

Why does it matter?

- Tells us something about theories of free choice
- Potentially about implicatures as well

Why does it matter?

- Tells us something about theories of free choice
- Potentially about implicatures as well
- Experimentally distinguishes between theories

The rest of today

(1) Background

The rest of today

(1) Background
(2) The two approaches

The rest of today

(1) Background
(2) The two approaches
(3) The divergent prediction

The rest of today

(1) Background
(2) The two approaches
(3) The divergent prediction
(4) The experiment

The rest of today

(1) Background
(2) The two approaches
(3) The divergent prediction
(4) The experiment

5 Discussion and conclusion

Outline

Outline

Free choice

(3) Angie is allowed to buy the car or the boat. \rightsquigarrow Angie can choose between the two

Under negation

(4) Angie is not allowed to buy the car or the boat. $\nrightarrow I t$'s not true that Angie can choose between the two
\rightsquigarrow Angie cannot buy either one

More schematically

(5) $\quad \diamond(A \vee B)$

More schematically

(5) $\diamond(A \vee B) \rightsquigarrow \diamond A \wedge \diamond B$

More schematically

(5) $\diamond(A \vee B) \rightsquigarrow \diamond A \wedge \diamond B$ FREE CHOICE
(6) $\quad \neg \diamond(A \vee B) \rightsquigarrow \neg \diamond A \wedge \neg \diamond B$

More schematically

(5) $\quad \diamond(A \vee B) \rightsquigarrow \diamond A \wedge \diamond B$

FREE CHOICE
(6) $\neg \diamond(A \vee B) \rightsquigarrow \neg \diamond A \wedge \neg \diamond B$ DUAL PROHIBITION

The empirical puzzle

- How free choice arises in positive contexts

The empirical puzzle

- How free choice arises in positive contexts
- How dual prohibition arises in negative contexts

Two main approaches

(1) Implicature based
(2) Non-implicature based

Outline

The implicature approach ${ }^{2}$

- Free choice is an implicature

[^0] Santorio \& Romoli 2018, Bar-Lev \& Fox 2017 a.o

The implicature approach ${ }^{2}$

- Free choice is an implicature
- Dual prohibition is just part of the literal meaning

[^1] Santorio \& Romoli 2018, Bar-Lev \& Fox 2017 a.o

The implicature approach: the gist

(7) $\quad \diamond(A \vee B)=\diamond A \vee \diamond B$

LITERAL MEANING

The implicature approach: the gist

(7) $\quad \diamond(A \vee B)=\diamond A \vee \diamond B$
(8) $\quad \neg \diamond(A \vee B)=\neg \diamond A \wedge \neg \diamond B$

LITERAL MEANING
DUAL PROHIB

The implicature approach: the gist

(7) $\quad \diamond(A \vee B)=\diamond A \vee \diamond B$
(8) $\neg \diamond(\mathrm{A} \vee \mathrm{B})=\neg \diamond \mathrm{A} \wedge \neg \diamond \mathrm{B}$
(9) $\quad \operatorname{Imp}[\diamond(A \vee B)]=\diamond A \wedge \diamond B$

LITERAL MEANING
DUAL PROHIB
FREE CHOICE

The implicature approach: the gist

(7) $\quad \diamond(A \vee B)=\diamond A \vee \diamond B$
(8) $\neg \diamond(A \vee B)=\neg \diamond A \wedge \neg \diamond B$
(9) $\quad \operatorname{Imp}[\diamond(A \vee B)]=\diamond A \wedge \diamond B$
(10) $\left.\left.\quad{ }^{*} \neg \mathrm{IMP}\right\rangle(A \vee B)\right)=\neg \diamond A \vee \neg \diamond B$

LITERAL MEANING
DUAL PROHIB
FREE CHOICE
NEGATED FREE CHOICE

In sum

- Free choice arises as an implicature
- Dual prohibition is just part of the literal meaning

Outline

Non-implicature accounts ${ }^{3}$

- The implicature approach is not the only option

[^2] 2018; see also Chemla 2010

Non-implicature accounts ${ }^{3}$

- The implicature approach is not the only option
- Non-implicature accounts of free choice

[^3]
Non-implicature accounts ${ }^{3}$

- The implicature approach is not the only option
- Non-implicature accounts of free choice
- A recent account based on homogeneity for concreteness

[^4] 2018; see also Chemla 2010

The homogeneity approach: the gist ${ }^{4}$

- Free choice is just part of the literal meaning

The homogeneity approach: the gist ${ }^{4}$

- Free choice is just part of the literal meaning
- Dual prohibition arises via homogeneity

The homogeneity approach: the gist ${ }^{5}$

- Free choice is just part of the literal meaning
- Dual prohibition arises via a homogeneity presupposition

The homogeneity approach: the gist

(11) $\quad \diamond(A \vee B)=\diamond A \wedge \diamond B$

FREE CHOICE

The homogeneity approach: the gist

(11) $\quad \diamond(A \vee B)=\diamond A \wedge \diamond B$
(12) $\quad \diamond A \leftrightarrow \diamond B$

FREE CHOICE
HOMOGENEITY

The homogeneity approach: the gist

(11) $\quad \diamond(A \vee B)=\diamond A \wedge \diamond B$
(12) $\quad \diamond A \leftrightarrow \diamond B$
(13) $\quad \neg \diamond(A \vee B)=\neg(\diamond A \wedge \diamond B)$

FREE CHOICE
HOMOGENEITY
NEGATED FREE CHOICE

The homogeneity approach: the gist

(14) $\quad \diamond(A \vee B)=\diamond A \wedge \diamond B$
(15) $\quad \diamond A \leftrightarrow \diamond B$
(16) $\quad \neg \diamond(A \vee B)=\neg(\diamond A \wedge \diamond B)$

FREE CHOICE
HOMOGENEITY
NEGATED FREE CHOICE

The homogeneity approach: the gist

(14) $\quad \diamond(A \vee B)=\diamond A \wedge \diamond B$
(15) $\quad \diamond A \leftrightarrow \diamond B$
(16) $\neg \diamond(A \vee B)=\neg(\diamond A \wedge \diamond B)$
(17) $\neg \diamond \mathrm{A} \wedge \neg \diamond \mathrm{B}$

FREE CHOICE
HOMOGENEITY
NEGATED FREE CHOICE
DUAL PROHIB

In sum

- Free choice is just part of the literal meaning
- Dual prohibition arises via the homogeneity presupposition

Outline

The two approaches

- Successfully capture basic pattern and more complex data

The two approaches

- Successfully capture basic pattern and more complex data
- Roughly with similar empirical coverage

A simple divergent prediction ${ }^{6}$

Distinguish between the two given a simple divergent prediction

Free choice vs dual prohibition

(18) Angie is allowed to buy the car or the boat \rightsquigarrow Angie can choose between the two FREE CHOICE
(19) Angie is not allowed to buy the car or the boat \rightsquigarrow Angie cannot buy either one

DUAL PROHIB

The implicature approach

(20) Angie is allowed to buy the car or the boat \rightsquigarrow Angie can choose between the two

The implicature approach

(20) Angie is allowed to buy the car or the boat \rightsquigarrow Angie can choose between the two

IMPLICATURE
(21) Angie is not allowed to buy the car or the boat \rightsquigarrow Angie cannot buy either one

LITERAL MEANING

The homogeneity approach

(22) Angie is allowed to buy the car or the boat \rightsquigarrow Angie can choose between the two Literal meaning

The homogeneity approach

(22) Angie is allowed to buy the car or the boat \rightsquigarrow Angie can choose between the two LITERAL MEANing
(23) Angie is not allowed to buy the car or the boat \rightsquigarrow Angie cannot buy either one (VIA) Presupposition

The homogeneity approach

(24) Angie is allowed to buy the car or the boat \rightsquigarrow Angie can choose one iff she can choose the other PRES
(25) Angie is not allowed to buy the car or the boat \rightsquigarrow Angie can choose one iff she can choose the other PRES

Difference in status

Context: Angie is only allowed to buy the boat
(26) Angie is allowed to buy the car or the boat \rightsquigarrow Angie can choose between the two

Difference in status

Context: Angie is only allowed to buy the boat
(27) Angie is not allowed to buy the car or the boat \rightsquigarrow Angie cannot buy either one

No difference in status

Context: Angie is only allowed to buy the boat
(28) Angie is allowed to buy the car or the boat
\rightsquigarrow Angie can choose one iff she can choose the other PS FAIL

No difference in status

Context: Angie is only allowed to buy the boat
(29) Angie is not allowed to buy the car or the boat \rightsquigarrow Angie can choose one iff she can choose the other PS FAIL

In sum

	IMPLICATURE	HOMOGENEITY
POS	IMPLICATURE VIOLATION	PRESUPPOSITION FAILURE
NEG	FALSITY	PRESUPPOSITION FAILURE

In sum

	IMPLICATURE	HOMOGENEITY
POS	IMPLICATURE VIOLATION	PRESUPPOSITION FAILURE
NEG	FALSITY	PRESUPPOSITION FAILURE

In sum

- Testing these predictions

In sum

- Testing these predictions
- A simple way to distinguish between the two approaches

Outline

The goal

- Testing the divergent predictions above

The goal

A ternary task building on previous work on implicatures, presuppositions, and homogeneity ${ }^{7}$
${ }^{7}$ Kriz \& Chemla 2016, Katsos and Bishop 2011, Abrusan and Szendroi 2013

Free choice - FC

(30) Angie is allowed to buy the car or the boat
(31) Angie is not allowed to buy the car or the boat

Simple disjunction - OR

(32) Angie bought the car or the boat
(33) Angie didn't buy the car or the boat

Simple disjunction - OR

(34) Angie bought the car or the boat \rightsquigarrow Angie didn't buy both the car and the boat

IMP

Simple disjunction - OR

(34) Angie bought the car or the boat \rightsquigarrow Angie didn't buy both the car and the boat
(35) Angie didn't buy the car or the boat
\rightsquigarrow Angie didn't buy either
LIT MEAN

The design

2×2 design with inference type (FC vs OR; between) and polarity (within) as factors

Material ${ }^{8}$

- Contexts with three items

Material ${ }^{8}$

- Contexts with three items
- Representing what a character was allowed/not allowed to buy (FC)

Material ${ }^{8}$

- Contexts with three items
- Representing what a character was allowed/not allowed to buy (FC)
- or what a character bought/didn't buy (OR)

Material: FC targets

Material: FC targets

(36) Angie is allowed to buy the car or the boat

Material: FC targets

(36) Angie is allowed to buy the car or the boat
(37) Angie is not allowed to buy the car or the boat

Material: OR targets

Material: OR targets

(38) Angie bought the car or the boat
(39) Angie didn't buy the car or the boat

OR targets

(40) Angie bought the car or the boat
(41) Angie didn't buy the car or boat Negative

Controls

- FC and OR
- Positive and negative
- True and false

Materials

- Each participant saw 8 targets and 8 controls in total

Procedure

- Ternary judgment task with participants evaluating sentences attributed to a puppet against a scenario

Procedure

- Ternary judgment task with participants evaluating sentences attributed to a puppet against a scenario
- The task is to choose a reward among three possible ones

Procedure

- Ternary judgment task with participants evaluating sentences attributed to a puppet against a scenario
- The task is to choose a reward among three possible ones

Procedure

Prediction mode: the sentences are puppet's guesses about

Procedure

Prediction mode: the sentences are puppet's guesses about

- what a character is allowed/not allowed to buy

Procedure

Prediction mode: the sentences are puppet's guesses about

- what a character is allowed/not allowed to buy
- what a character bought/didn't buy OR

Example FC negative

Angie is not allowed to buy the car or the boat

Example FC negative

Example FC negative

Participants

- 114 participants recruited through AMT, randomly assigned to the two conditions
- 3 excluded for not reporting English as their native language, leaving 111 participants (56 in FC condition, 55 in disjunction condition)

Predictions - OR - both approaches

Predictions - OR - both approaches

(42) Angie bought the car or the boat

IMP FALSE
(43) Angie didn't buy the car or the boat

FALSE

Predictions - OR

(44) Angie bought the car or the boat
(45) Angie didn't buy the car or the boat

Predictions - FC - implicature approach

Predictions - FC - implicature approach

(46) Angie is allowed to buy the car or the boat IMP FALSE
(47) Angie is not allowed to buy the car or the boat

FALSE

Predictions - FC - implicature approach

(48) Angie is allowed to buy the car or the boat

(49) Angie isn't allowed to buy the car or the boat

Predictions - FC - homogeneity approach

(50) Angie is allowed to buy the car or the boat PS FAIL
(51) Angie is not allowed to buy the car or the boat PS FAIL

Predictions - FC - homogeneity approach

(52) Angie is allowed to buy the car or the boat

(53) Angie isn't allowed to buy the car or the boat

Predictions - FC - homogeneity approach

(54) Angie is allowed to buy the car or the boat
(55) Angie isn't allowed to buy the car or the boat

In sum - Predictions

	OR	FC IMP	FC HOM
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

In sum - Predictions

	OR	FC IMP	FC HOM
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

In sum - Predictions

	OR	FC IMP	FC HOM
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

In sum - Predictions

	OR	FC IMP	FC HOM
POS	IMP VIOLATION	IMP VIOLATION	PS FAIL
NEG	FALSITY	FALSITY	PS FAIL

Predictions - in sum

- An interaction between type of inference and polarity

Predictions - in sum

- An interaction between TYPE OF inference and polarity
- Challenging for the implicature approach

Predictions - in sum

- An interaction between type of inference and polarity
- Challenging for the implicature approach
- Entirely in line with the homogeneity approach

Outline

Results

Targets

Results

Targets

Angie didn't buy the car or the boat

Results

Targets

Angie bought the car or the boat

Results

Targets

Angie is not allowed to buy the car or the boat

Results

Targets

Angie is allowed to buy the car or the boat

Results ${ }^{9}$

Targets

Effect of polarity $\left(\chi^{2}(1)=102, p<.001\right)$ Marginal effect of inference TYPe $\left(\chi^{2}(1)=3.2, p=.07\right)$

[^5]
Results ${ }^{10}$

Interaction between INFERENCE TYPE and POLARITY
$\left(\chi^{2}(1)=88, p<.001\right)$
${ }^{10}$ Mixed effects cumulative link model

In sum

- Interaction between type of inference and polarity

In sum

- Interaction between type of inference and polarity
- Difference between positive and negative with OR

In sum

- Interaction between type of inference and polarity
- Difference between positive and negative with OR
- Symmetric responses for positive and negative with FC

Controls

Outline

Conclusion

- Experimental work addressing the debate between implicature and non-implicature approaches to free choice

Main result

- Participants' distinguished between falsity and implicature violation

Main result

- Participants' distinguished between falsity and implicature violation
- But assigned intermediate status to both positive and negative FC conditions

Main result

- Interaction inference type and polarity

Main result

- Interaction inference type and polarity
- Challenging for the implicature approach

Main result

- Interaction inference type and polarity
- Challenging for the implicature approach
- Entirely in line with the homogeneity approach

Conclusion

- Either as supporting a non-implicature approach or as a push to refine the implicature one

Conclusion

- Either as supporting a non-implicature approach or as a push to refine the implicature one
- Powerful and simple perspective to address this debate

Conclusion

- Plural definites
- Bare plurals
- Neg-raising
- Temporal inferences
- ...

Thanks!

Moysh Bar-Lev, Milica Denic, Simon Goldstein, Mora Maldonado, Paul Marty, Agata Renans, and Paolo Santorio

Outline

A difference

- OR and FC are analogous in both positive and negative

A difference

- OR and FC are analogous in both positive and negative
- The FC negative condition has a true reading with wide scope disjunction

A difference

A difference

(56) Angie is not allowed to buy the car or the boat FALSE

A difference

(56) Angie is not allowed to buy the car or the boat FALSE
(57) Either Angie is not allowed to buy the car or she is not allowed to buy the boat

A difference

A difference

(58) Angie didn't buy the car or the boat

FALSE

A difference

(58) Angie didn't buy the car or the boat FALSE
(59) Either Angie did not buy the car or she did not buy the boat

Back to the results

Possible interpretation

When there is ambiguity and the truth-value of the readings are different, the intermediate value is chosen ${ }^{11}$

Possible interpretation

Targets

The negative FC would be accounted for given this hypothesis

Another comparison

- To test this hypothesis we need a baseline with OR and negation

Another comparison

- To test this hypothesis we need a baseline with OR and negation
- Where wide scope disjunction leads to a true reading

Another comparison

Another comparison

(60) Angie didn't buy the boat or the car

FALSE

Another comparison

(60) Angie didn't buy the boat or the car
(61) Either Angie did not buy the boat or she did not buy the car

Another comparison

Context: $\mathrm{A} \wedge \neg \mathrm{B}$
(62) $\neg(A \vee B)$

FALSE
(63) $\quad \neg A \vee \neg B$

TRUE

We have it already

Controls

Comparing it to the FC negative target

Targets

The comparison

Negative 1-disjunct-true conditions

The comparison

Marginally significant effect of inference type ($z=1.7, p=.08$)

The comparison

(64) Angie is not allowed to buy the car or the boat (65) Angie didn't buy the car or the boat

In sum

- Wide scope as an explanation of the difference between OR and FC negative?

In sum

- Wide scope as an explanation of the difference between OR and FC negative?
- The comparison with the OR control also reveals a difference

In sum

- Wide scope as an explanation of the difference between OR and FC negative?
- The comparison with the OR control also reveals a difference
- Scope might be playing a role but it can't be the whole story

Outline

Addressing the challenge

- Appealing to differences among scalar items is not enough ${ }^{12}$
${ }^{12}$ Scalar diversity - van Tiel et al 2016

Addressing the challenge

- Unclear that a difference between alternatives would help ${ }^{13}$

Addressing the challenge

- Re-thinking the distribution of implicatures might help ${ }^{14}$

The distribution of implicatures

(66) Angie is not allowed to buy the car or the boat

The distribution of implicatures

(66) Angie is not allowed to buy the car or the boat (67) not[Angie is allowed to buy the car or the boat]

The distribution of implicatures

(66) Angie is not allowed to buy the car or the boat (67) not[Angie is allowed to buy the car or the boat]
\rightsquigarrow Angie cannot buy either one
FALSE

The distribution of implicatures

(68) Angie is not allowed to buy the car or the boat (69) not[IMP[Angie is allowed to buy the car or the boat]

The distribution of implicatures

(68) Angie is not allowed to buy the car or the boat (69) not[IMP[Angie is allowed to buy the car or the boat] \rightsquigarrow it's not true that Angie can choose between the two

The distribution of implicatures

(68) Angie is not allowed to buy the car or the boat
(69) not[IMP[Angie is allowed to buy the car or the boat]
\rightsquigarrow it's not true that Angie can choose between the two TRUE

The distribution of implicatures

Context: $\diamond A \wedge \neg \diamond B$
(70) $\quad \neg \diamond(A \vee B)=\neg \diamond A \wedge \neg \diamond B$

FALSE

The distribution of implicatures

Context: $\diamond A \wedge \neg \diamond B$
(70) $\quad \neg \diamond(A \vee B)=\neg \diamond A \wedge \neg \diamond B$
(71) $\quad \neg(\operatorname{ImP} \diamond(A \vee B))=\neg(\diamond A \wedge \diamond B)$

FALSE
TRUE

The interpretation as before

If one reading is true and one is false go for the intermediate value

Back to the results

Targets

The standard constraint

Do not weaken!: do not compute an implicature if it weakens the overall meaning of the sentence

The distribution of implicatures

(72) $\quad \neg \diamond(\mathrm{A} \vee \mathrm{B})=\neg \diamond \mathrm{A} \wedge \neg \diamond \mathrm{B}$

The distribution of implicatures

$\begin{array}{ll}\text { (72) } & \neg \diamond(A \vee B)=\neg \diamond A \wedge \neg \diamond B \\ \text { (73) } & { }^{\prime} \neg(\operatorname{IMP} \diamond(A \vee B))=\neg(\diamond A \wedge \diamond B)\end{array}$
FALSE
TRUE

Same for OR

(74) $\quad \neg(\mathrm{A} \vee \mathrm{B})=\neg \mathrm{A} \wedge \neg \mathrm{B}$

FALSE

Same for OR

(74) $\quad \neg(A \vee B)=\neg A \wedge \neg B$
(75) $\quad \neg(\operatorname{ImP}(A \vee B))=\neg[(A \vee B) \wedge \neg(A \wedge B)]$

FALSE
TRUE

Same for OR

(76) $\quad \neg(\mathrm{A} \vee \mathrm{B})=\neg \mathrm{A} \wedge \neg \mathrm{B}$
(77) $\quad * \neg(\operatorname{Imp}(A \vee B))=\neg[(A \vee B) \wedge \neg(A \wedge B)]$

FALSE
TRUE

A different principle ${ }^{15}$

Do not compute an implicature if it leads to a non-connected meaning

A different principle ${ }^{16}$

- This principle can distinguish between FC and OR

A different principle ${ }^{16}$

- This principle can distinguish between FC and OR
- The inference of disjunction under negation leads to a non-connected meaning

A different principle ${ }^{16}$

- This principle can distinguish between FC and OR
- The inference of disjunction under negation leads to a non-connected meaning
- Free choice under negation leads to a connected meaning

A different principle

Context: $\diamond A \wedge \neg \diamond B$
(78) $\quad \neg \diamond(A \vee B)=\neg \diamond A \wedge \neg \diamond B$
(79) $\quad \neg(\operatorname{IMP} \diamond(A \vee B))=\neg(\diamond A \wedge \diamond B)$

FALSE
TRUE

Different for OR

(80) $\quad \neg(\mathrm{A} \vee \mathrm{B})=\neg \mathrm{A} \wedge \neg \mathrm{B}$
(81) $\quad{ }^{*} \neg(\operatorname{ImP}(A \vee B))=\neg[(A \vee B) \wedge \neg(A \wedge B)]$

FALSE
TRUE

Back to the results

Targets

Prediction

(82) Angie didn't buy the car or the boat...

Prediction

(82) Angie didn't buy the car or the boat . . . she didn't want either one

Prediction

(82) Angie didn't buy the car or the boat . . . she didn't want either one

EASY

Prediction

(82) Angie didn't buy the car or the boat . . . she didn't want either one

EASY
(83) Angie didn't buy the car or the boat ...

Prediction

(82) Angie didn't buy the car or the boat . . . she didn't want either one

EASY
(83) Angie didn't buy the car or the boat . . . she bought both of them

Prediction

(82) Angie didn't buy the car or the boat . . . she didn't want either one EASY
(83) Angie didn't buy the car or the boat ... she bought both of them

Prediction

(84) Angie is not allowed to buy the car or the boat...

Prediction

(84) Angie is not allowed to buy the car or the boat ...she doesn't deserve either one

Prediction

(84) Angie is not allowed to buy the car or the boat ... she doesn't deserve either one

EASY

Prediction

(84) Angie is not allowed to buy the car or the boat ...she doesn't deserve either one
(85) Angie is not allowed to buy the car or the boat ...

Prediction

(84) Angie is not allowed to buy the car or the boat ... she doesn't deserve either one EASY
(85) Angie is not allowed to buy the car or the boat ...she can only buy the car

Prediction

(84) Angie is not allowed to buy the car or the boat ... she doesn't deserve either one EASY
(85) Angie is not allowed to buy the car or the boat ... she can only buy the car EASY

In sum

Promising direction to address the challenge for the implicature approach

Instructions

When it's time to answer, you'll see a small strawberry, a medium strawberry, and a big strawberry!

If Raffie's guess is totally right, give her the biggest strawberry!

If Raffie's guess is totally wrong, give her the smallest strawberry!

If Raffie's guess is sort of in between -- not totally right, but not totally wrong - then give her the medium strawberry.

[^0]: ${ }^{2}$ Fox 2007, Klinedinst 2006, Chierchia 2013, Chemla 2010, Franke 2013,

[^1]: ${ }^{2}$ Fox 2007, Klinedinst 2006, Chierchia 2013, Chemla 2010, Franke 2013,

[^2]: ${ }^{3}$ Aloni 2018, Starr 2016, Willer 2018, Goldstein 2018, Rothschild and Yablo

[^3]: ${ }^{3}$ Aloni 2018, Starr 2016, Willer 2018, Goldstein 2018, Rothschild and Yablo 2018; see also Chemla 2010

[^4]: ${ }^{3}$ Aloni 2018, Starr 2016, Willer 2018, Goldstein 2018, Rothschild and Yablo

[^5]: ${ }^{9}$ Mixed effects cumulative link model

